Реляционная модель логического разграничения доступа: теоретическое описание и экспериментальная проверка производительности

А. А. Иткес, К. А. Шапченко, В. Ю. Бухонов

НИИ механики МГУ, Мехмат МГУ

21 Октября 2014

План доклада

- Постановка задачи.
- ▶ Реляционная модель ЛРД определение и свойства.
- Эксперименты по измерению производительности реализации модели.
- Планы дальнейшей работы над моделью.

Постановка задачи

Задача: Управление логическим разграничением доступа в многопользовательских сетевых информационных системах, включая ИАС «Наука-МГУ» (Истина).

- Множество пользователей системы постоянно меняется.
- Принадлежность объектов пользователям по схеме многие-ко-многим.
- Пользователи могут быть по-разному связаны с объектами.
- Права доступа пользователя к объекту зависят также от взаимосвязей объекта с другими объектами.

Реляционная модель ЛРД

В информационной системе заданы следующие множества:

- ▶ Objects множество объектов;
- ▶ Users ⊂ Objects множество пользователей;
- ► Classes множество классов;
- Relations множество отношений;
- Actions множество видов доступа.

Реляционная модель ЛРД на примере ИАС «Наука-МГУ» (Истина)

Классы объектов в ИАС «Наука-МГУ» (Истина):

- пользователь;
- сотрудник;
- результат научно-исследовательской деятельности;
- статья;
- журнал или сборник;
- организация или подразделение;
- **...**

Реляционная модель ЛРД на примере ИАС «Наука-МГУ» (Истина)

Отношения между объектами в ИАС «Наука-МГУ» (Истина):

- пользователь соответствует сотруднику;
- сотрудник является автором статьи;
- статья опубликована в журнеле;
- сотрудник работает в подразделении;
- пользователь является ответственным по подразделению;
- одно подразделение входит в другое;
- **.**..

Реляционная модель ЛРД на примере ИАС «Наука-МГУ» (Истина)

Виды доступа к объекту «статья» в ИАС «Наука-МГУ» (Истина):

- изменить привязку к авторам;
- изменить привязку к журналу;
- изменить название;
- загрузить полный текст;
- скачать полный текст;
- **.**

Реляционная модель ЛРД

Также в информационной системе заданы следующие отношения:

- ▶ ObjectsRelations ⊂ Objects × Relations × Objects;
- ▶ RelationAccessGranted ⊂ Relations × Actions;
- ► ClassActions ⊂ Classes × Actions;
- ▶ RelationLeftClass : Relations → Classes;
- ▶ RelationRightClass : Relations → Classes;
- ightharpoonup Relation Transitions \subset Relations \times Relations.

Реляционная модель ЛРД

- ► ObjectRelations₀ = ObjectRelations;
- ▶ ObjectRelations_{n+1} = {(o₁, r₁₃, o₃) : (o₁, r₁₂, o₂), (o₂, r₂₃, o₃) ∈ ObjectRelations_n, (r₁₂, r₂₃, r₁₃) ∈ RelationTransitions};
- ▶ $\overline{ObjectRelations} = \bigcup_{n=0}^{\infty} ObjectRelations_n$.

Пользователь u имеет право доступа a к объекту o, если существует такое отношение r, что $(u, r, o) \in \overline{ObjectRelations}$ и $(r, a) \in RelationAccessGranted$.

Доступ к объектам по цепочке отношений

- ▶ Пользователь u связан отношением r_1 с объектом o_1 ;
- ▶ объект o_1 связан отношением r_2 с объектом o_2 ;
- ▶ объект o_2 связан отношением r_3 с объектом o_3 ;
- lacktriangle есть правило переноса отношений $(r_1, r_2) o r_{12}$;
- ightharpoonup есть правило переноса отношений $(r_{12}, r_3) o r_{13}$;
- отношение r_{13} дает пользователю право доступа a к объектам.

Тогда пользователь u имеет право доступа a к объекту o_3 по цепочке (r_1, r_2, r_3) , порождающей отношение r_{13} .

Доступ к объектам по цепочке отношений

Пользователь u имеет право доступа a к объекту o_3 по цепочке (r_1, r_2, r_3) , порождающей отношение r_{13} .

Доступ к объектам по цепочке отношений на примере ИАС «Наука-МГУ» (Истина)

Доступ к объектам по цепочке отношений:

- ▶ Пользователь A является ответственным по подразделению B;
- ▶ подразделение C входит в подразделение B;
- ightharpoonup сотрудник D работает в подразделении C;
- ▶ сотрудник D является автором статьи E.

Пользователь A имеет некоторые права доступа к статье E по цепочке объектов A, B, C, D, E.

Теоретическая оценка производительности механизмов реляционной модели ЛРД

Задача: оценить максимальную длину цепочки отношений в системе.

Если ни одно из отношений в системе не может быть порождено цепочкой, содержащей его само, то максимальная длина цепочки отношений не превосходит $2^{\|Relations\|-1}$.

Алгоритм работы функции проверки доступа — получить список разрешенных видов доступа пользователя u к объекту o класса c.

- ▶ Установить *allowed* = \emptyset .
- для каждой цепочки отношений, которая может связывать пользователя с объектом класса с выполнить:
 - с помощью SQL-запроса проверить, существует ли цепочка объектов, по которой пользователь и связан с объектом о данной цепочкой отношений;
 - если она существует, то добавить в allowed виды доступа, соответствующие отношению, порождаемому данной цепочкой;
- ▶ вернуть (allowed).

Количество объектов ИАС «Наука-МГУ» (Истина) в июне 2014:

- пользователи около 10000;
- сотрудники около 100000;
- статьи около 200000;
- связок статьи с автором около 1000000.

Объекты в тестовой базе данных:

- пользователи 100000;
- сотрудники 100000;
- статьи 200000;
- подразделения 5000;
- журналы 5000.

Отношения в тестовой базе данных:

- каждый сотрудник соответствует единственному пользователю а каждый пользователь – единственному сотруднику;
- ▶ вероятность того, что случайно выбранный пользователь является автором случайно выбранной статьи – 0.00005;
- вероятность того, что случайно выбранный пользователь является ответственным по случайно выбранному подразделению – 0.0001;
- ▶ вероятность того, что случайно выбранный сотрудник работает в случайно выбранном подразделении — 0.001.

Правила переноса отношений:

- если пользователь связан с сотрудником, и сотрудник является автором статьи, то пользователь является автором статьи;
- если пользователь ответственный по подразделению и сотрудник работает в подразделении, то пользователь является ответственным по месту работы сотрудника;
- если пользователь является ответственным по месту работы сотрудника и сотрудник является автором статьи, то пользователь является ответственным по месту написания статьи.

Время получения списка допустимых операций с данным объектом для данного пользователя – от 1 до 3 миллисекунд.

Планы дальнейшей работы над моделью

- Использование модели при наличии в системе транзитивных отношений.
- ▶ Объединение с ролевой моделью ЛРД.
- ▶ Ввод объекта «сеанс доступа к системе».